Answer:
1.53seconds
Explanation:
Using first equation of motion :
V=U + at
Where final velocity (V) =+8.3m/s
Initial velocity (U) =+4.4m/s
Acceleration (a) = 0.65m/s^2
time(s)=?
V=U + at
+8.3^2 = +4.4 + 0.65 * t
Making t the subject of the formula :
Therefore, t= ( +8.3 - 4.4)/0.65 = 1.53seconds
The answer is P-waves and S-waves
Answer:
0.000136kg/m3
Explanation:
13.6 / 1000 = 0.0136kg/cm3
0.0136 / 100 = 0.000136kg/m3
Answer:
The temperature required is near about 3 million kelvin
Explanation:
The brilliance of the star results from the nuclear reaction that take place in the core of the star and radiate a huge amount of thermal energy resulting from the fusion of hydrogen into helium.
For this reaction to take place, the temperature of the star's core must be near about 3 million kelvin.
The hydrogen atoms collide and starts and the energy from the collision results in the heating of the gas cloud. As the temperature comes to near about
, the nuclear fusion reaction takes place in the core of the gas cloud.
The huge amount of thermal energy from the nuclear reaction gives the gas cloud a brilliance resulting in a protostar.
Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN