Accuracy?
filler text filler text filler text
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
A mechanical wave<span> is a </span>wave<span> that is an oscillation of </span>matter<span>, and therefore transfers energy through a </span>medium.[1]<span> While waves can move over long distances, the movement of the </span>medium of transmission<span>—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.</span>
Answer:
Many types of scientific equipment are used to perform different functions in the science lab. Which of the following combinations of equipment would be needed to bring one liter of water to 85°C? a. ... Various pieces of safety equipment are used in the lab to provide protection against injury.
Explanation:
<span>A: put an atom on a poster in the exhibit
Good luck. The poster itself is made of trillions of trillions of trillions
of atoms. You could not see the extra one any easier than you could
see the ones that are already there, and even if you could, it would be
lost in the crowd.
B: use a life size drawing of an atom
Good luck. Nobody has ever seen an atom. Atoms are too small
to see. That's a big part of the reason that nobody knew they exist
until less than 200 years ago.
D: set up a microscope so that visitors can view atoms
Good luck. Atoms are way too small to see with a microscope.
</span><span><span>C: Display a large three dimensional model of an atom.
</span> </span>Finally ! A suggestion that makes sense.
If something is too big or too small to see, show a model of it
that's just the right size to see.