Well,
A control in an experiment would basically be the "normal" version of your test subjects.
In a drug testing experiment with people, the control group would be the people who don't take the drug.
In an experiment on the effects of salt on potatoes, the control group would be a potato without salt on it.
So in an experiment to measure the effects of gas additives on fuel, the control would be fuel without additives.
Answer:
0.00899 N
Explanation:
The magnitude of the electrostatic force between two charges is given by the equation:
where:
is the Coulomb's constant
are the charges
r is the distance between the two charges
And the force is:
- Repulsive if the two charges have same sign
- Attractive if the two charges have opposite sign
In this problem we have:
(charge of object 1)
(charge of object 2)
r = 1 m (separation between the objects)
So, the electric force is

Answer:
ax = 6.43m/s²
Explanation:
The acceleration is the time derivative of the velocity function ax = dvx(t)/dt
We have been given the velocity function v(t) and also the velocity v = 12.0m/s and we are requested to calculate the acceleration at this time which we don't know.
So the first step is to calculate the time at which the velocity =12.0m/s and with this time calculate the acceleration. Detailed solution can be found in the attachment below.
The frequency of the wheel is given by:

where N is the number of revolutions and t is the time taken. By using N=100 and t=10 s, we find the frequency of the wheel:

And now we can find the angular speed of the wheel, which is related to the frequency by:
<h3><u>Answer;</u></h3>
<u> = 55.2 Coulombs </u>
<h3><u>Explanation</u>;</h3>
We can determine Charge using the formula
Q =It, where Q is the amount of charge in Coulombs, I is the current in amperes and t is the time in seconds.
I = 0.92 amperes, t = 1 minute or 60 seconds
Charge = 0.92 × 60
<u> = 55.2 Coulombs </u>