Answer:
At the burner temp. and pressure, 18.85 litres of air is needed to completely combust each gram of propane
Explanation:
The combustion stoichiometry is as follows:
C₃H₈ + 5O₂ = 4 H₂O + 3CO₂ The molecular weights (g/mol) are:
MW 44 5x32 4x18 3x44
So each gram of propane is 1/44 = 0.02272 mol propane
and will need 5 x 0.02272 = 0.1136 mol oxygen
At 0.21 mol fraction oxygen in air, 0.1136 / 0.21 = 0.54 mol air is needed to burn the propane.
At the low pressure in the burner we can use the Ideal Gas Law
PV=nRT, or V = nRT/P
P = 1.1 x 101325 Pa = 111457 Pa
T = 195°C + 273 = 468 K
R = 8.314
and we calculated n = number of moles air = 0.54 mol
So V m³ = 0.54 x 8.314 x 468 / 111457 = 0.0188 m³ = 18.85 litres air.
For part of our orbit the northern half of Earth is tilted toward the Sun. This is summer in the northern hemisphere; there are longer periods of daylight, the Sun is higher in the sky, and the Sun's rays strike the surface more directly, giving us warmer temperatures.
According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.
Balanced equation = 2 NaHCO3 —-> Na2CO3 + H2O + CO2
Can you mark me as brainliest?