I am pretty sure that <span>If I were asked to compare matter in solid, liquid, and gaseous states, the statement which would best defined a gas is </span>highest energy, highest molecular motion, and least dense packaging of molecules. I choose this one because it's not sensible to <span>heat CO2 (in case of safety) and in the last option the amount of energy is not satisfying.
Hope it helps!</span>
The correct answer is actually
B) energy that flows from warmer objects to cooler objects.
because temperature is a measure of the average amount of energy possessed by an object due to the random motions of its particles. Heat is the energy that flows from warmer objects to cooler objects. Heat cannot flow in the opposite direction.
Answer:
The answer to your question is: 0.028 kg of NO2
Explanation:
Data
3.7 x 10²⁰ molecules of NO2 in kg
MW of NO2 = 14 + (16 x 2) = 14 + 32 = 46 kg
1 mol of NO2 --------------------- 6.023 x 10 ²³ molecules
x --------------------- 3.7 x 10²⁰ molecules
x = 3.7 x 10²⁰ x 1 / 6.023 x 10 ²³
x = 0.00061 mol
1 mol of NO2 --------------------- 46 kg of NO2
0.00061 mol ------------------ x
x = 0.00061 x 46/1
x = 0.028 kg of NO2
Electronegativity of an element decreases as we move down a group on the periodic table and electronegativity increases while moving from left to right across a period on the periodic table.
Explanation:
- The electronegativity increases as we move from left to right across a period because from left to right across a period, the nuclear charge is increasing Hence the attraction for the valence electrons also increases.
- As we move down a group, the atoms of each element have an increasing number of energy levels. The distance between the nucleus and valence electron shell increases and reduces the attraction for valence electrons. Hence electronegativity decreases as we move from top to bottom down a group.
Answer:
Explanation:
The Ideal Gas Law states that PV=nRT.
Rearrange that into P/n=RT/V.
In this case, the cylinder is rigid so the volume, V, does not change.
Temperature does not change either.
Out of 450 grams of gas, 150 grams leak out. So only 450-150 = 300 grams is left.
n is number of moles which is dependent on mass:
n1/n2 = 450/300 = 3/2
P1/n1 = RT/V = P2/n2
P2 = P1/n1*n2
= 7.2/3*2
= 4.8 atmosphere