Answer:
Total energy of the object = mgh. As it falls, its potential energy will change into kinetic energy. If v is the velocity of the object at a given instant, the kinetic energy = 1/2mv2.
Explanation:
Answer:
50m; 0m/s.
Explanation:
Given the following data;
Initial velocity = 20m/s
Acceleration, a = - 4m/s²
Time, t = 5secs
To find the displacement, we would use the second equation of motion;

Substituting into the equation, we have;



S = 50m
Next, to find the final velocity, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
<em>Substituting into the equation, we have;</em>
V = 0m/s
<em>Therefore, the displacement of the bus is 50m and its final velocity is 0m/s.</em>
Answer:
In standard GR, nothing exists at the center of a black hole. The center of a black hole is a singularity, and because GR fails at that point it is simply removed from the manifold. That means that the singularity is not part of spacetime.
To answer your question more realistically, we believe that GR is an approximate theory that fails well before you reach the center. Unfortunately, we have no good alternative theory with which to answer the question in the region where GR fails. We simply don’t have any data from that regime and it is very hard to formulate a good theory without data. So there very well could be time at the center, but we simply don’t have a good way to even guess.
The frequency of bird chirping hear by hiran will be 1.77 kHz.
<u>Explanation:</u>
As per Doppler effect, the observer will feel a decrease in the frequency of the receiving signal if the source is moving away from the observer. So the shifted frequency is obtained using the below equation:

Here , c is the speed of sound, Vs is the velocity of source with which it is moving away. f is the original frequency of source and f' is the frequency shift heard by the observer.
As here, f = 1800 Hz, Vs= 6 m/s and c = 343 m/s, then

So, the frequency of bird chirping hear by hiran will be 1.77 kHz.