Angular acceleration = (change in angular speed) / (time for the change)
change in angular speed = (zero - 2,600 RPM) = -2,600 RPM
time for the change = 10 sec
Angular acceleration = -2600 RPM / 10 sec = -260 rev / min-sec
(-260 rev/min-sec) x (1 min / 60 sec) = <em>-(4 1/3) rev / sec²</em>
Since the acceleration is negative, the motor is slowing down.
You might call that a 'deceleration' of (4 1/3) rev/sec² .
The average speed is 1/2(2,600 + 0) = 1,300 rev/min = (21 2/3) rev/sec.
Number of revs = (average speed) x (time) = (21 2/3) x (10sec) = <em>(216 2/3) revs</em>
Answer:
a)

b) 
Explanation:
The net force on the car must produce the centripetal acceleration necessary to make this circle, which is
. At the top of the circle, the normal force and the weight point downwards (like the centripetal force should), while at the bottom the normal force points upwards (like the centripetal force should) and the weight downwards, so we have (taking the upwards direction as positive):

Which means:

The limit for falling off would be
, so the minimum speed would be:

Answer:
50N
Explanation:
Given parameters:
Mass of the bike = 10kg
Acceleration = 5m/s²
Unknown:
Force on the bike = ?
Solution:
To solve this problem, we apply Newton's second law of motion.
Force = mass x acceleration
Force = 10 x 5 = 50N
<span>As the charged insulating rod approaches the sphere (not in contact), free electrons in the sphere move. If the rod is negatively charged, free electrons move to the side of the sphere opposite the side with the rod. If the rod is positively charged, the free electron moves to the side of the sphere with the rod. In either case, the region of the sphere near the rod acquires a charge with the sign opposite to that on the rod.
a. Since opposedly charged objects always attract each other, the rod and ball always experience mutual attractive forces.
b. Since
the side of the sphere near the bar always has the opposite charge to
the charge of the rod, the rod and the sphere always attract each other. <span>They do not repel each other.</span></span>
Answer:

Explanation:
As we know that box is initially at rest
So we will have

now as it will be displaced from initial position to final position then final speed of the box is reached to

now we know by work energy theorem that work done by all the forces on the box will be equal to the change in kinetic energy
So here we will have


