Answer: The two answers are the machine will require an input greater than 100 ft.-lbs. And the other is The machine may accomplish the task faster than manual work.
Hope this help :3
The answer is A. <span>Some work input is used to overcome friction. </span>
Answer:
The force must he apply to the sled is of F= 764.4 N.
Explanation:
m= 60 kg
g= 9.8 m/s²
μ=0.3
W= m*g
W= 588 N
Fr= μ*W
Fr= 176.4 N
F= W + Fr
F= 764.4 N
Answer:
Probably the more correct version of the story is that Newton, upon observing an apple fall from a tree, began to think along the following lines: The apple is accelerated, since its velocity changes from zero as it is hanging on the tree and moves toward the ground. Thus, by Newton's 2nd Law there must be a force that acts on the apple to cause this acceleration. Let's call this force "gravity", and the associated acceleration the "acceleration due to gravity". Then imagine the apple tree is twice as high. Again, we expect the apple to be accelerated toward the ground, so this suggests that this force that we call gravity reaches to the top of the tallest apple tree.
Answer:
a) Option D
b) Option A
Explanation:
a) Option D
Because a massive car will have more inertia which will make the car move faster but a massive car simultaneously will have more friction thereby restricting its movement in the forward direction. Hence, all the three cars will move equal distance.
b) Option A, Car F
Being most massive car, the frictional force required to stop the car will be highest.