The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as
Here,
= Permeability at free space
N = Number of loops
A = Cross-sectional Area
l = Length
Replacing with our values we have,
Therefore the Inductance is
If current is passed through two parallel conductors in the same direction and the conductors are placed near each other, they will attract each other.
<h3>What is electric current?</h3>
Electric current can be defined as the flow of electrons.
Since electrons are easily removed from atom and are very mobile, the flow of electrons constitute an electric current.
Materials which allow electric current to flow through them are known as conductors. Examples of conductors are metals, and electrolytes.
On the other hand, materials which do not allow electric current to pass through them are known as insulators. Examples of insulators are wood and rubber.
The flow of current is known as electricity.
Parallel conductors with current flowing through them in the same direction are attracted to each other as a result of a magnetic field produced by the flow of current.
In conclusion, conductors allow electric current to pass through and the flow of current through a conductor produces a magnetic field.
Learn more about parallel conductors at: brainly.com/question/17148082
#SPJ1
Answer:
D) 735 J(oules)
Explanation:
Work is defined as force * distance
Force is defined as mass * acceleration
Given a mass of 15 kg and a gravitational acceleration of 9.8 m/s² since the box is being lifted up, the force being applied to the box is 15 kg * 9.8 m/s² = 147 N
Since the distance is 5 meters, the work done is 147 N * 5 m = 735 N/m = 735 J, making D the correct answer.
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
Answer:
F₄ = 29.819 N
Explanation:
Given
F₁ = (- 25*Cos 50° i + 25*Sin 50° j + 0 k) N
F₂ = (12*Cos 50° i + 12*Sin 50° j + 0 k) N
F₃ = (0 i + 0 j + 4 k) N
Then we have
F₁ + F₂ + F₃ + F₄ = 0
⇒ F₄ = - (F₁ + F₂ + F₃)
⇒ F₄ = - ((- 25*Cos 50° i + 25*Sin 50° j) N + (12*Cos 50° i + 12*Sin 50° j) N + (4 k) N) = (13*Cos 50° i - 37*Sin 50° j - 4 k) N
The magnitude of the force will be
F₄ = √((13*Cos 50°)² + (- 37*Sin 50°)² + (- 4)²) N = 29.819 N