Answer:
3.066×10^21 photons/(s.m^2)
Explanation:
The power per area is:
Power/A = (# of photons /t /A)×(energy / photon)
E/photons = h×c/(λ)
photons /t /A = (Power/A)×λ /(h×c)
photons /t /A = (P/A)×λ/(hc)
photons /t /A = (680)×(678×10^-9)/(6.63×10^-34)×(3×10^-8)
= 3.066×10^21
Therefore, the number of photons per second per square meter 3.066×10^21 photons/(s.m^2).
Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s
<span>What I have here is exactly the same problem, however, with the time changed to 19 mins:
metabolic energy = metabolic power*time = 1.150*19*60 = 1.311 kJ..corresponding to 1.311/4.186 = 313,2 Cal or kcal
If we reasonably assume a metabolic eff.cy of 20%, it means we need to assume food for 1500 Cal approx.
Just plug the value t=15min to the equation and you will surely get the correct answer.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer: See the explanation below.
Explanation: For this assignment, I chose to display how eclipses are created.
My model was made utilizing a 3D displaying device program for all intents and purposes. The items utilized are three models I made for this presentation, Earth, the moon, and the sun. These three models will be utilized for the showcase.
The light that shines from the sun would create a shadow on the moon. The moon would then catch the light that should've arrived on Earth, making the shadow we call an eclipse. Earth gets a shadow of the moon and the remainder of Earth is lit up from the rest of the light, making an eclipse.
The individual I demonstrated my project to was [<em>Someone you know</em>], [<em>Pronoun</em>] said it precisely took after the occasion of an eclipse. The light from the sun being shined on to the moon rather than the Earth, creating the shadow we call an eclipse.