Answer:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
Explanation:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
⇄ 
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
The top one does because there are more and it’s closer
The concentration of hydroxide ion is 5
10^
−
14 M.
<u>Explanation:</u>
Consider the equilibrium of this acid's dissociation,
H
C
l
O
4 ⇌ H
+ + C
l
O 4
-
Moreover, let's assume that H
C
l
O
4 is a strong acid and will fully dissociate.
Hence,
[
H
+
] = 0.20 M
Now, recall,
K
w = [
H
+
]
[
O
H
−
] = 1.0
10
^−
14
Hence,
⇒
[
O
H
−
] = K
w / [
H
+
] = 5
10^
−
14 M.
Hello!
The exercise doesn't say the final temperature, but we are going to assume that the increase is of 20 °C (The procedure is the same, just change the final temperature) To calculate the heat absorbed by water, we need to use the equation for
Heat Transfer, in the following way (assuming that the heat increase is 20°C):

So, the Heat absorbed by water is
1297,04 J
Have a nice day!
Answer:
The correct option is;
D)
Explanation:
The given reaction is presented as follows;
NH₄Cl (s) → NH₃ (g) + HCl (g) ΔH° = 176 kJ/mol, ΔS° = 0.285 kJ/(mol·K)
We note that the Gibbs free energy, ΔG° is represented by the following equation;
ΔG° = ΔH° - T·ΔS°
Where:
T = Temperature (Kelvin)
The reaction will be spontaneous for exergonic reactions, ΔG° < 0 and it will not be spontaneous for endergonic reaction, ΔG° > 0
At room temperature, T = 25 + 273.15 = 298.15 K
Which gives;
ΔG° = 176 - 298.15 × 0.285 = 91.03 kJ/mol which is > 0 Not spontaneous reaction
At 800°C, we have;
T = 273.15 + 800°C + 1073.15 K
ΔG° = 176 - 1073.15 * 0.285 = -129.85 kJ/mol which is < 0 the reaction will be spontaneous
The correct option is therefore, that at room temperature, the reaction is not spontaneous. However, at high temperatures. like 800 °C, the free energy value turns negative and this reaction becomes spontaneous.