The force is gravitational because when something is falling is call gravitational
Answer: car B has travelled 4times as far as Car A
d=vi*t+1/2at^2
No initial velocity so equation becomes;
d=1/2at^2 and the acceleration is the same between both only time is different;
Car A d=1/2a(1)^2
Car B d=1/2a(2)^2
Car A d= 1^2=1
Car B d= 2^2=4
Car B d=4*Car A
So car B has travelled 4 times as far as car A
Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s
Answer:

West
Explanation:
m = Mass of car = 
t = Time = 9 seconds
u = Initial velocity = 30 m/s
v = Final velocity = 0
Impulse is given by

The magnitude of the total impulse applied to the car to bring it to rest is
.
The direction is towards west as the sign is negative.