Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer:
v = 1.30 m/s
Explanation:
given,
mass hung = 0.35 Kg
spring stretched when load is hanged (x)= 0.13 m
now,
weight of the mass attached = Kx
m g = k x
0.35 x 9.8 = k x 0.13
k = 26.38 N/m
now, using conservation of energy




v = 1.30 m/s
Answer:
Explanation:
a ) Between r = 0 and r = r₁
Electric field will be zero . It is so because no charge lies in between r = 0 and r = r₁ .
b ) From r = r₁ to r = r₂
At distance r , charge contained in the sphere of radius r
volume charge density x 4/3 π r³
q = Q x r³ / R³
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q x r³ / ε₀R³
E= Q x r / (4πε₀R³)
E ∝ r .
c )
Outside of r = r₂
charge contained in the sphere of radius r = Q
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q / ε₀
E = Q / 4πε₀r²
E ∝ 1 / r² .
Answer:
weight = 25*10 =250 N
Explanation:
g must be given in units of m/s^2
The weight of any type of body will be the product of his mass by the gravity
where:
m =mass [kg]
F = force [N] or [kg*m/s^2]
g = acceleration [m/s^2]
<span>During
adverse weather conditions such as rain or fog, drivers should take
action accordingly by turning on their headlights, slowing down and
increasing following distance. Adverse weather means that you are driving in difficult and dangerous conditions. Increasing following distance will help you to maintain safe driving and avoid tailgating. </span>