<h2>
Answer:</h2>
390 g KNO₃
<h2>
General Formulas and Concepts:</h2><h3><u>Chemistry</u></h3>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3><u>Math</u></h3>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h2>
Explanation:</h2>
<u>Step 1: Define</u>
2.3 × 10²⁴ formula units KNO₃
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g.mol
Molar Mass of KNO₃ - 39.10 + 14.01 + 3(16.00) = 101.11 g/mol
<u>Step 3: Convert</u>
<u />
= 386.172 g KNO₃
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules and round.</em>
386.172 g KNO₃ ≈ 390 g KNO₃
Answer:
Mass = 29.23 g
Explanation:
Given data:
Volume of solution = 814.2 mL 814.2/1000 = 0.8142 L)
Molarity of solution = 0.227 M
Mass of solute in gram = ?
Solution:
Molarity = number of moles / volume in L
By putting values,
0.227 M = number of moles / 0.8142 L
Number of moles = 0.227 M × 0.8142 L
Number of moles = 0.184 mol
Mass in gram:
Mass = number of moles × molar mass
Molar mass of calcium acetate = 158.17 g/mol
Mass = 0.184 mol × 158.17 g/mol
Mass = 29.23 g
Boiling point<span> is the </span>temperature<span> at which the vapor pressure of the liquid equals the surrounding pressure.
Above boiling point point, liquid get converted into vapour.
Now, boiling point of water is 100 oC at room pressure. Room pressure is equal to 760 torr. Thus, at 100 oC, vapour pressure of water becomes equal to 760 torr.
Now, if external pressure is increased to 880 torr, more heat is to be supplied so that vapour pressure of water equals 880 torr.
So, at 880 torr, boiling point of water will be more than 100 oC. In present case, most like the boiling point of water is equal to 105 oC.
</span>