In the compound potassium nitrate (KNO3), the atoms within the nitrate ion are held together with COVALENT bonding, and the potassium ion and nitrate ion are held together by IONIC bonding.
A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. Covalent bond is formed between two non-metals.
Ionic bonds form when one atom gives up one or more electrons to another atom. It is the complete transfer of valence electron(s) between oppositely charged atoms. Ionic bond is formed between metal (electropositive element) and non-metal(electronegative element)
In nitrate ions the Nitrogen (N) and Oxygen (O) both are non-metals and it involves the sharing of electron pairs between N and O atoms, so the bonding in Nitrate (
) ion is covalent bonding.
In potassium nitrate , Potassium (K) is a metal and Nitrate (
) ion is non-metal and it involves the complete transfer of valence electron between oppositely charged atoms (K+) and (
). So the bonding between Potassium and Nitrate is Ionic bonding.
NOTE : Bonding between Non-metals is Covalent bonding.
Bonding between Metal and Non-metals is Ionic bonding.
Answer:
24g of NaOH are required
Explanation:
Molarity, M, is an unit of concentration widely used in chemistry defined as the ratio between moles of solute (In this case, NaOH), and volume of solution in liters.
We can find the moles of NaOH and its mass with the volume and desired concentration as follows:
<em>Moles NaOH:</em>
400.0mL = 0.400L * (1.50mol / L) = 0.600 moles NaOH
<em>Mass NaOH -Molar mass: 40.0g/mol-:</em>
0.600 moles * (40.0g / mol) =
<h3>24g of NaOH are required</h3>
It represents the number of moles required of that molecule to balance the chemical equation, which means to have the reaction chemically happen and goes to completion.
For example:
CH4 + O2 --> H2O + CO2 that is not balanced
with the coefficients located
CH4 + 2O2 --> 2H2O + CO2 now with the coefficients the number of oxygen and hydrogen on each side are equal
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L