Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 
A rotating disc supplied with constant power where the relationship of the angular velocity of the disc and the number of rotations made by the disc is governed by Newton's second law for rotation. This law is specially made for rotating bodies which is extracted from Newton's second law of motion.
Answer:
It will have aim at a point "below" the insect.
From the insect's point of view, the fish will appear to be shallower than it actually is because a ray of light from the insect to the fish will be bent "towards" the normal when the ray enters the water