The potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
<h3>
What is the energy in a capacitor?</h3>
The energy stored in a capacitor is an electrostatic potential energy.
It is related to the charge(Q) and voltage (V) between the capacitor plates.
It is represented as 'U'.
<h3>
How to determine the potential difference</h3>
Formula:
Potential difference, V is the ratio of the charge to the capacitance of a capacitor.
It is calculated using:
V = Q ÷ C
Where Q = charge 5 × 10∧-5C and C = capacitance 10∧-9
Substitute the values into the equation
Potential difference, V = 5 × 10∧-5 ÷ 10∧-9 = 5 × 10∧4 volts
<h3>
How to determine the energy stored</h3>
Formula:
Energy, U = 1 ÷ 2 (QV)
Where Q= charge and V = potential difference across the capacitor
Energy, U = 1 ÷ 2 ( 5 × 10∧-5 × 5 × 10∧4)
= 0.5 × 25 × 10∧-1
= 0.5 × 2.5
= 1. 25 Joules
Therefore, the potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
Learn more about capacitance here:
brainly.com/question/14883923
#SPJ1
Look at the first person’s answer. Cause I know I’m wrong
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
Answer:
Explanation:
Acceleration of particle A is 7.3 times the acceleration of particle B.
Let the acceleration of particle B is a, then the acceleration of particle A is
7.3 a.
Let the period of particle A is T and the period of particle B is 2.5 T.
Let the radius of particle A is RA and the radius of particle B is RB.
Use the formula for the centripetal force

So, 
The ratio of radius of A to the radius of B is given by


RA : RB = 1.17