Answer:
Velocity
Explanation:
"The principle is that the slope of the line on a position-time graph is equal to the velocity of the object. If the object is moving with a velocity of +4 m/s, then the slope of the line will be +4 m/s."
^^This explanation is from physicsclassroom.com
There's not enough information to find an answer.
I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude. This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.
The formula used to find potential energy is <em>P.E. = M * G * H</em> (P.E. is potential energy, M is mass, G is gravitational pull, and H is height). So the answer to your question is <em>5 * 9.8 * 2</em>, which equals 98.
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058