Answer:
1400 units of momentum.
Explanation:
Using the formula p=mv. We can get the momentum using 70*20 =1400 units of momentum
The dummy is moving with a speed 0 km/h relative to the seat in which it is sitting.
If the relative speed was non-zero, the dummy would move away from its seat, which contradicts the problem formulation.
Answer:
the object has least potential energy at mean position of the SHM
Explanation:
If a block is connected with a spring and there is no resistive force on the system
In this case the total energy of the system is always conserved and it will change from one form to another form
So here we will say that
Kinetic energy + Potential energy = Total Mechanical energy
As we can say that total energy is conserved so here we have least potential energy when the system has maximum kinetic energy
So here we also know that at mean position of the SHM the system has maximum speed and hence maximum kinetic energy.
So the object has least potential energy at mean position of the SHM
Answer:
2.2 meters
Explanation:
Potential energy, PE created by a charge, q at a radius r from the charge source, Q, is expressed as:

is Coulomb's constant.
#The electric field,
at radius r is expressed as:

From i and ii, we have:


#Substitute actual values in our equation:

Hence, the distance between the charge and the source of the electric field is 2.2 meters