Answer: a) E= 6.63x10^-19J
E= 3.97×10^2KJ/mol
b) E = 3.31×10^-19J
E= 18.8×10^4 KJ/mol
C) E = 1.32×10^-33J
E= 8.01×10^-10KJ/mol
Explanation:
a) E = h ×f
h= planks constant= 6.626×10^-34
E=(6.626×10^-34)×(1.0×10^15)
E=6.63×10^-19J
1mole =6.02×10^23
E=( 6.63×10^-19)×(6.02×10^23)
E=3.97×10^2KJ/mol
b) E =(6.626×10^-34)/(1.0×10^15)
E=3.13×10^-19J
E= 3.13×10^-19) ×(6.02×10^23)
E= 18.8×10^3KJ/MOL
c) E= (6.626×10^-34) /0.5
E= 1.33×10^-33J
E= (1.33×10^-33) ×(6.02×10^23)
E= 8.01×10^-10KJ/mol
Answer:
P = -1.67 dP
Explanation:
given,
myopic lawyer has a far point of = 60.0 cm = 0.6 m
If a person is suffering from myopia then he cannot see the farthest object clearly.
Image of far object does not form on the retina so, the image appear to be blur.
using lens formula



P = -1.67 dP
Answer:
41°
Explanation:
Kinetic energy at bottom = potential energy at top
½ mv² = mgh
½ v² = gh
h = v²/(2g)
h = (2.4 m/s)² / (2 × 9.8 m/s²)
h = 0.294 m
The pendulum rises to a height of above the bottom. To determine the angle, we need to use trigonometry (see attached diagram).
L − h = L cos θ
cos θ = (L − h) / L
cos θ = (1.2 − 0.294) / 1.2
θ = 41.0°
Rounded to two significant figures, the pendulum makes a maximum angle of 41° with the vertical.
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





Answer:
Hydroelectricity
Explanation:
Because of flooding of water, we can assume that the electricity was generated by Water which is known as Hydroelectricity.