Answer:
Hey mate I shall not tell you the answer I shall explain it to you after this if still you can't understand then say
Explanation:
Derive v = u + at by Graphical Method. Consider the velocity – time graph of a body shown in the below Figure
Derive s = ut + (1/2) at2 by Graphical Method. Velocity so time graph to derive the equations of motion.
Derive v2 = u2 + 2as by Graphical Method. Velocity–Time graph to derive the equations of motion.
I hope you understand now
enjoy your day
#Captainpower :)❤❤
Answer:
14 cm
Explanation:
F = (frac{uv}{u – v})
F = +ve
v = -ve
30 = (frac {25 {times} (-v)}{25 – (-v)})
v = (frac {25 {times} (-v)}{25+v})
v = 14cm
(Note that either negative or positive values go to show the positioning and hence, they are not a strong necessity in your final answer.)
So happy that i could help you!
Now this question could turn out to be easy for you!!
Answer:
Not be changed
Option: D
<u>Explanation:</u>
The physical quantity which has both ‘magnitude and direction’ is called vector. These vectors are represented by a line and an arrow, <em>the line represent the magnitude and arrow represent the direction of the physical quantity</em>. The vectors are added and subtracted according to the direction of the vectors.
According to the vector law addition while adding vectors direction and length of the vector is not be changed.<em> If the length of the vector changed the magnitude is also changed while so, while adding vectors length must not be changed.
</em>