Answer:
The pH of the solution will be 7.53.
Explanation:
Dissociation constant of KClO=
Concentration of acid in 1 l= 0.30 M
Then in 200 ml = 
The concentration of acid, HClO=[acid]= 0.006 M
Concentration of salt in 1 L = 0.20 M
Then in 300 ml = 
The concentration of acid, KClO=[salt]= 0.006 M
The pH of the solution will be given by formula :
![pH=pK_{a}^o+\log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%5Eo%2B%5Clog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
![pH=-\log[2.8\times 10^{-8}]+\frac{[0.06 M]}{[0.06 M]}](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B2.8%5Ctimes%2010%5E%7B-8%7D%5D%2B%5Cfrac%7B%5B0.06%20M%5D%7D%7B%5B0.06%20M%5D%7D)
The pH of the solution will be 7.53.
Answer:
Bubbles are comprised of gases, which have a lesser density than water. Since they are less dense, they get pushed up to the surface, and they rise, lighter than the liquid around them. This is just like helium in air; helium is lighter than air, so it rises, pushed to the top by the pressure around it.
PLS MARK THE BRAINLIST
<span>Hi, friend.
Steepest - Being steep to the greatest degree.
Steep - S</span>harply angled.
Example: When hiking trails lead straight up mountainsides, they've got a steep incline.
Hope this helps!
The formula of hydrated copper(II) sulfate is CuSO4.10H2O
<h3>What is the formula of the hydrated copper (ii) sulfate salt?</h3>
The formula of the hydrated copper (ii) sulfate is determined as follows:
Mass of hydrated salt = 12.5 g
Mass of anhydrous salt = 8.0 g
Mass of water = 12.5 - 8 = 4.5 g
mole ratio of water and anhydrous salt is;
4.5/18 : 8.0/159.5
0.562 : 0.05
10 : 1
Water of crystallization (n) = 10.
Therefore, the formula of hydrated copper(II) sulfate is CuSO4.10H2O
Learn more about water of crystallization at: brainly.com/question/26146814
#SPJ1