Answer:
(1) Chloroplast
Explanation:
Cells of living organisms are made up of certain function-specific structures called ORGANELLES. Some organelles are present in plant cells and absent in animal cells and vice versa. In a plant cell, one notable organelle that allows it perform the photosynthetic process is the CHLOROPLAST.
However, the chloroplast is predominantly found in the LEAF part of a plant. This is because leaf cells are the site of photosynthesis. Hence, according to this question, Joe would be able to tell whether the plant cell was from the leaf or the root by looking for CHLOROPLAST as a differentiating factor in each cell.
Answer:
20.4 grams Zn
Explanation:
To find the mass, you first need to find the moles. This can be found using the Ideal Gas Law equation:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
Before you can plug the values into the equation, you need to convert Celsius to Kelvin.
P = 0.980 atm R = 0.08206 atm*L/mol*K
V = 7.80 L T = 25.0 °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(0.980 atm)(7.80 L) = n(0.08206 atm*L/mol*K)(298.15 K)
7.644 = n(24.466)
0.312 moles = n
Now that you have the number of moles, you can convert it to grams using the atomic mass of zinc. The final answer should have 3 sig figs to match the sig figs in the given values.
Atomic Mass (Zn): 65.380 g/mol
0.312 moles Zn 65.380 grams
------------------------- x ------------------------- = 20.4 grams Zn
1 mole
N₂ + 3H₂ ⇒ 2NH₃
1mol : 2mol
3,72mol : 7,44mol
n = 7,44mol
M = 17g/mol
m = n * M = 7,44mol * 17g/mol = 126,48g
Answer:
Cu
Explanation:
In the given reaction of the addition of copper to nitric acid,
Cu(s) + 4HNO3(aq) -> Cu(NO3)2(aq) + 2NO2(g) + 2H2O(l)
Cu or copper would be characterized as the reducing agent in this reaction. It is the chemical substance that is losing electrons and being oxidized due to this reduction/loss in this redox reaction as it is the metal that loses electrons by reacting with the non-metals.
The Gulf Stream affects the climate in Britain by bringing warm water from the Caribbean to North West Europe. This keeps the climate in Britain warmer than other places at a similar latitude.