When you’re driving on the freeway it’s necessary to keep your foot on the accelerator to keep the car moving at a constant speed. In this situation the net force on the car is zero.
The rate of change of the velocity of a particle with respect to time is called its acceleration. If the velocity of the particle changes at a constant rate, then this rate is called the constant acceleration.
Since we are using metres and seconds as our basic units, we will measure acceleration in metres per second per second. This will be abbreviated as m/s². It is also commonly abbreviated as ms⁻².
For example, if the velocity of a particle moving in a straight line changes uniformly (at a constant rate of change) from 2 m/s to 5 m/s over one second, then its constant acceleration is 3 m/s².
Zero acceleration means constant velocity. Also to be noticed is that the definition of acceleration does not involve any information about forces. Acceleration is a kinematic quantity. Irrespective of what forces are acting, if the velocity is constant, the acceleration is zero.
Learn more about acceleration here : brainly.com/question/605631
#SPJ4
For q3 to be in equilibrium the total force acting on it has to be zero.
Let's say that total distance traveled by car is L (this is just for the convenience).
We can set up a system of equations to find an answer. Let's say that from q1 to q3 the distance is r_1 and from q3 to q2 the distance is r_2, we know that this distance has to be equal to:

The second equation is going to the total force acting on the charge q3:

k_c is the Coulomb's constant. Since left-hand side is zero we just divide whole equation with k_c to get rid of it:

Let's solve this for r_1^2:

Now we have a quadratic equation with following parameter:

We know that two solutions are:

We need a positive solution. When we plug in all the numbers we get:
When air rises in the atmosphere it gets cooler and is under less pressure. When air cools, it's not able to hold all of the water vapor it once was. Air also can't hold as much water when air pressure drops. The vapor becomes small water droplets or ice crystals and a cloud is formed.
I hope this helps you..
Hey there mate :)
Even if two persons are given the same work load, the speed of the work done gets different by the energy of those persons.
No one is sure that he/she can complete the work within the time. He may or may not.
Also, the physical characteristics makes the work different. If one person has so much power to work all day, the other person may not have.
Therefore, <em>even if two persons do the same amount of work , they may have different power</em><em>.</em>