Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:
You could throw away the following items:
Mixed paper: Newspaper, magazine, junk mail, cardboard, frozen food packaging, wrapping paper, paper bags, etc.
Cans: aluminum, foil, tin, steal, aerosol (empty without pressure) and metal food trays. ...
Unbroken glass: Wine bottles, bottles and jars.
Plastic: Rigid containers like milk jugs, shampoo or water bottles.
Hope this helped
When we shake a mango tree, the mangoes fall down. It is because when we shake the tree, the mango tend to be rest due to inertia where as the branches are in motion. That is why the mangoes tend to be at rest due to inertia where as the branches are in the motion.
Answer:
cindi
Explanation:
cindi's work done is larger than all the other students combined