Answer:
The electric and magnetic fields gradually increase.
Explanation:
Time constant in RL circuits, denoted by τ, is equal to the value of L / R which is the value of the inductor over the resistor. It is used to calculate the point when the current will reach the maximum value in the steady state of the circuit. Because of this behavior of the circuit, the magnetic field and the electric field gradually increase to their maximum values.
I hope this answer helps.
Answer:

Explanation:
In a beta (minus) decay, a neutron in a nucleus turns into a proton, emitting a fast-moving electron (called beta particle) alongside with an antineutrino.
The general equation for a beta decay is:
(1)
where
X is the original nucleus
Y is the daughter nucleus
e is the electron
is the antineutrino
We observe that:
- The mass number (A), which is the sum of protons and neutrons in the nucleus, remains the same in the decay
- The atomic number (Z), which is the number of protons in the nucleus, increases by 1 unit
In this problem, the original nucles that we are considering is iodine-131, which is

where
Z = 53 (atomic number of iodine)
A = 131 (mass number)
Using the rule for the general equation (1), the dauther nucleus must have same mass number (131) and atomic number increased by 1 (54, which corresponds to Xenon, Xe), therefore the equation will be:

Answer:
53.5 N
Explanation:
Vertical component of the F force 50 sin30 = 25 N upward
force of gravity = m g = 8 * 9.81 =78.5 N Downward
NET downward force by block on table = net upward force exerted by table = 78.5 -25 =53.5 N
Answer:
The number of revolutions turned by the centrifuge is 8250 revolutions.
Explanation:
Given;
number of revolution per minutes, ω = 15000 rpm
time of motion, t = 330 s = 5.5 minutes
The number of revolutions turned by the centrifuge is given by;

Therefore, the number of revolutions turned by the centrifuge is 8250 revolutions.