Given the speed and the distance, to find time you can use the formula speed is equal to distance over time. From there you can manipulate the equation for time to equal the distance divided by speed. Time is equal to 18.4 meters divided by 35m/s which equals 0.526 seconds.
Answer:

Explanation:
The energy lost due to air friction is equal to the mechanical energy lost by the parachutist during the fall.
The initial mechanical energy of the parachutist (at the top) is equal to his gravitational potential energy:

where
m = 20.1 kg is his mass
is the acceleration due to gravity
h = 662 m is the initial heigth
The final mechanical energy (at the bottom) is equal to his kinetic energy:

where
v = 7.12 m/s is the final speed of the parachutist
Therefore, the energy lost due to air friction is:

When a cloud of gas and dust in space was disturbed, maybe by the explosion of a nearby star.This explosion made waves in space which squeezed the cloud of gas & dust.
F. i hope that helps im sorry if im wrong but that sounds right to me
Answer:
The magnitude of the acceleration of the box is 2 m/s².
Explanation:
Given:
Mass of the box,
kg
Force acting towards east,
N
Frictional force acting towards west,
N
Let the acceleration be
m/s².
Now, net force acting on the box towards east is given as:

From Newton's second law of motion,

Therefore, the magnitude of the acceleration of the box is 2 m/s².