Answer:
25.35%
Explanation:
Again let me restate the the equation of the reaction;
H2O (ℓ) + 2 MnO4 - (aq) + 3 CN- (aq) → 2 MnO2 (s) + 3 CNO- (aq) + 2 OH- (aq)
Amount of potassium permanganate reacted = 10.2/1000 * 0.08035 = 8.1957 * 10^-4 moles
If 2 moles of MnO4 - reacts with 3 moles of CN-
8.1957 * 10^-4 moles of MnO4 - reacts with 8.1957 * 10^-4 * 3/2
= 1.229 * 10^-3 moles of CN-
Mass of CN- reacted = 1.229 * 10^-3 moles of CN- * 26.02 g/mol
= 0.03 g
Hence, percentage of the cyanide = 0.03 g/0.1183 g * 100
= 25.35%
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
Reactants are the substances that undergo changes and the new substance created from it is called products.
<u>Given information:</u>
A solution with a high H+ ion concentration
<u>To determine:</u>
The nature of pH of such a solution
<u>Explanation:</u>
pH is a measure of the H+ ion concentration in a given solution. Lower the pH higher will be the H+ concentration and the solution is termed acidic. In contrast, if the pH is higher the H+ concentration will be lower and the solution is basic.
Mathematically,
pH = -log[H+]
[H+] = 
pH = 2; [H+] = 10⁻²M
pH = 7; [H+] = 10⁻⁷M
pH = 13; [H+] = 10⁻¹³M
pH = 14; [H+] = 10⁻¹⁴M
Ans: (a)
Thus, the highest concentration of H+ ions is for a solution of pH = 2