<h2>
Answer: x=125m, y=48.308m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
(1)
Where:
is the projectile's initial speed
is the angle
is the time since the projectile is launched until it strikes the target
is the final horizontal position of the projectile (the value we want to find)
y-component:
(2)
Where:
is the initial height of the projectile (we are told it was launched at ground level)
is the final height of the projectile (the value we want to find)
is the acceleration due gravity
Having this clear, let's begin with x (1):
(3)
(4) This is the horizontal final position of the projectile
For y (2):
(5)
(6) This is the vertical final position of the projectile
The solution for the problem is:
Constant speed means Fnet = 0.
Let m = mass of wood block and Θ = angle of ramp; then if µk = 0.35 …
The computation would be:
Fnet = 0 = mg (sin Θ) - (µk) (mg) (cos Θ)
mg (sin Θ) = µk (mg) (cos Θ)
µk = tan Θ
Θ = arctan(µk)
= arctan (0.35)
≈ 19.3°
Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT
Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
I’m pretty sure it’s average speed= total distance and total time which is A.