<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³
Answer:
300.06 grams of glucose can be produced from a photosynthesis reaction that occurs using 10 moles of carbon dioxide.
Explanation:
The following Balanced Reaction will take place:
Zn + 2HCl → ZnCl₂ + H₂
In the question, we have 2 moles of Zinc and 3 moles of HCl for this reaction
<u>Amount of HCl required to completely react with 2 moles of Zn:</u>
Since we need 2 moles of HCl for every mole of Zn, we will need 2(2) = 4 moles of HCl for every 2 moles of Zn
<u>Identifying the Limiting Reagent:</u>
But we are only given 3 moles of HCl where we need 4 moles to completely react.
So, since HCl is in less amount, it is the Limiting Reagent
Answer: The final temperature of nickel and water is
.
Explanation:
The given data is as follows.
Mass of water, m = 55.0 g,
Initial temp,
,
Final temp,
= ?,
Specific heat of water = 4.184
,
Now, we will calculate the heat energy as follows.
q = 
= 
Also,
mass of Ni, m = 15.0 g,
Initial temperature,
,
Final temperature,
= ?
Specific heat of nickel = 0.444 
Hence, we will calculate the heat energy as follows.
q = 
=
Therefore, heat energy lost by the alloy is equal to the heat energy gained by the water.

= -(
)
= 
Thus, we can conclude that the final temperature of nickel and water is
.
Answer:
Substitution mutation
Explanation:
A substitution mutation is a type of mutation in which one or more nucleotide base is replaced by another in a sequence. This will result in the replacement of one or more amino acid in the amino acid sequence.
This is the case in this question where the original amino acid sequence was given as: Leucine – Alanine – Glycine – Leucine. After mutation, the following mutated sequence was produced: Leucine – Alanine – Valine – Leucine.
As illustrated above, one would notice that there is replacement of GLYCINE amino acid by VALINE in the mutated sequence, hence, it is an example of SUBSTITUTION MUTATION.