Answer:it will be malfunction
Explanation:
Answer:
The equipments you should have ready to start the crucible experiment includes: safety goggles, crucible with lid, crucible tong, ring support with clay triangle, Bunsen burner and heat resistant tile.
Explanation:
Crucible is an equipment in the laboratory which is suitable for heating a sample to extreme heat over a flame, Modern laboratory crucible are made up of graphite- based composite materials for achievement of higher performance. Because extreme heat is involved, you should locate the correct labware for the experiment, including the equipment to safely handle and support the crucible. These equipments includes:
--> Safety goggles: Because you will work with chemical it is advisable to use a safety goggles which protects the eyes from dangerous floating chemical aerosol.
--> crucible with lid: This is the main apparatus with the lid (cover) which is used to cover the crucible to prevent spilling of the boiling chemical.
--> Crucible tong: These are scissors like tools used to grasp hot crucible.
--> Ring support with clay triangle: the clay triangle is used to hold crucible when they are being heated. They usually sit on a ring stand.
--> Bunsen burner: Produces a single open gas flame which can be used for heating.
With the safety equipments listed above, you can carry out experiment using the crucible. These equipments helps minimise laboratory hazard that may occur should Incase it's not available.
It would be NaOH + HCl → <span>NaCl + H2O
</span>
NaOH is sodium hydroxide, which is a strong base. HCl is hydrochloric acid, which is a strong acid.
You have a strong base and a strong acid on the left side, however, at the result side, you end up with NaCl + H2O. Sodium chloride is simply table salt and H2O is just water, thus it has been neutralized.
Answer:
17.5moles
Explanation:
The number of moles in a substance can be calculated by using the formula;
Number of moles (n) = mass (m) ÷ molar mass (MM)
According to this question, mass of ammonia (NH3) = 297g
Molar Mass of NH3 = 14 + 1(3)
= 17g/mol
n = 297/17
n = 17.47
Number of moles of NH3 = 17.5moles
Answer:
2,2,3,3-tetrapropyloxirane
Explanation:
In this case, we have to know first the alkene that will react with the peroxyacid. So:
<u>What do we know about the unknown alkene? </u>
We know the product of the ozonolysis reaction (see figure 1). This reaction is an <u>oxidative rupture reaction</u>. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If
is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.
<u>What is the product with the peroxyacid?</u>
This compound in the presence of alkenes will produce <u>peroxides.</u> Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product <u>2,2,3,3-tetrapropyloxirane.</u> (see figure 2)