Answer: 0.5 g/cm^3
Density equals mass divided by volume so..
60/120 is 0.5 g/cm^3
40.1g of nitrogen gas is produced.
The equation given is
2 NH₃ + 3 CuO →3 Cu + N₂ + 3 H₂O
This equation is already balanced.
When 3 moles of CuO are consumed, 1 mole of nitrogen gas is produced.
We get 1 mole of nitrogen from 3 moles of copper oxide.
We need to find the number of moles of nitrogen gas produced when 4.3 moles of copper oxide are consumed.
4.3/3 x 1 = 1.433 mols
- 1.433 mols of nitrogen gas are produced
- The molar mass of nitrogen gas is 14+14 = 28g
- The amount of nitrogen gas produced in grams is 28x1.433 = 40.1g
40.1g of nitrogen gas can be made when 4.3 moles of CuO are consumed.
Learn more about molarity here:
brainly.com/question/24305514
#SPJ10
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4