3-SAT ≤p TSP
If P ¹ NP, then no NP-complete problem can be solved in polynomial time.
both the statements are true.
<u>Explanation:</u>
- 3-SAT ≤p TSP due to any complete problem of NP to other problem by exits of reductions.
- If P ¹ NP, then 3-SAT ≤p 2-SAT are the polynomial time algorithm are not for 3-SAT. In P, 2-SAT is found, 3- SAT polynomial time algorithm implies the exit of reductions. 3 SAT does not have polynomial time algorithm when P≠NP.
- If P ¹ NP, then no NP-complete problem can be solved in polynomial time. because for the NP complete problem individually gets the polynomial time algorithm for the others. It may be in P for all the problems, the implication of latter is P≠NP.
All of the dimensions on an aircraft drawing are _________ to the bottom of the drawing
Answer: parallel
Answer:
a.) -147V
b.) -120V
c.) 51V
Explanation:
a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).
b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.
c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.
Honestly, these things take practice to get used to. It's really hard to explain this.
The person that is correct based on the 2 statements from Tech A and Tech B is; Tech B
A mass flow sensor is defined as a sensor that is used to measure the mass flow rate of air entering a fuel-injected internal combustion engine and then sends a voltage that represents the airflow to the electronic control circuit.
However, for Tech A is incorrect and so the correct answer is that Tech B is right because his statement corresponds with the definition of mass flow sensor.
Read more about fuel injection engines at; brainly.com/question/4561445
Answer:
if ur mad you may drive faster if ur sad u may drive slower due to the amount of adrenaline and dopamine levels in your body in that given moment
Explanation: