1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
2 years ago
9

Technician a says that diesel engines can produce more power because air in fuel or not mix during the intake stroke. Technician

be says that diesel engines produce more power because they use excess air to burn feel who is correct
Engineering
1 answer:
mariarad [96]2 years ago
3 0

Answer:

Technician be says that diesel engines produce more power because they use excess air to burn feel who is correct

Explanation:

He is correct as many engines are run by diesel. It produces more power as that is how cars produce more power.

You might be interested in
Air is compressed in a reversible, isothermal, steady- flow process from 15 psia, 100°F to 100 psia. Calculate the work of compr
mixas84 [53]

Answer:

|W|=169.28 KJ/kg

ΔS = -0.544 KJ/Kg.K

Explanation:

Given that

T= 100°F

We know that

1 °F = 255.92 K

100°F = 310 .92 K

P _1= 15 psia

P _1= 100 psia

We know that work for isothermal process  

W=mRT\ln \dfrac{P_1}{P_2}

Lets take mass is 1 kg.

So work per unit mass

W=RT\ln \dfrac{P_1}{P_2}

We know that for air R=0.287KJ/kg.K

W=RT\ln \dfrac{P_1}{P_2}

W=0.287\times 310.92\ln \dfrac{15}{100}

W= - 169.28 KJ/kg

Negative sign indicates compression

|W|=169.28 KJ/kg

We know that change in entropy at constant volume

\Delta S=-R\ln \dfrac{P_2}{P_1}

\Delta S=-0.287\ln \dfrac{100}{15}

ΔS = -0.544 KJ/Kg.K

3 0
3 years ago
A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s
monitta

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

4 0
3 years ago
What is the core domain for Accenture’s Multi-party Systems practice?
12345 [234]

Answer:

a

Explanation:

digital identity is the answer

6 0
3 years ago
4 grams of a saturated liquid are converted to a saturated vapor by being heated in a weighted piston–cylinder device arranged t
antiseptic1488 [7]

Answer:T2= 351.6k

Explanation:

6 0
3 years ago
Water flows at a rate of 0.040 m3 /s in a horizontal pipe whose diameter is reduced from 15 cm to 8 cm by a reducer. If the pres
Blababa [14]

Answer:

hL = 0.9627 m

Explanation:

Given

Q = 0.040 m³/s (constant value)

D₁ = 15 cm = 0.15 m  ⇒  R₁ = D₁/2 = 0.15 m/2 = 0.075 m

D₂ = 8 cm = 0.08 m  ⇒  R₂ = D₂/2 = 0.08 m/2 = 0.04 m

P₁ = 480 kPa = 480*10³Pa

P₂ = 440 kPa = 440*10³Pa

α = 1.05

ρ = 1000 Kg/m³

g = 9.81 m/s²

h₁ = h₂

hL = ?  (the irreversible head loss in the reducer)

Using the formula Q = v*A   ⇒  v = Q/A

we can find the velocities v₁ and v₂ as follows

v₁ = Q/A₁ = Q/(π*R₁²) = (0.040 m³/s)/(π*(0.075 m)²) = 2.2635 m/s

v₂ = Q/A₂ = Q/(π*R₂²) = (0.040 m³/s)/(π*(0.04 m)²) = 7.9577 m/s

Then we apply the Bernoulli law (for an incompressible flow)

(P₂/(ρ*g)) + (α*v₂²/(2*g)) + h₂ = (P₁/(ρ*g)) + (α*v₁²/(2*g)) + h₁ - hL

Since h₁ = h₂ we obtain

(P₂/(ρ*g)) + (α*v₂²/(2*g)) = (P₁/(ρ*g)) + (α*v₁²/(2*g)) - hL

⇒  hL = ((P₁-P₂)/(ρ*g)) + (α/(2*g))*(v₁²-v₂²)

⇒  hL = ((480*10³Pa-440*10³Pa)/(1000 Kg/m³*9.81 m/s²)) + (1.05/(2*9.81 m/s²))*((2.2635 m/s)²-(7.9577 m/s)²)

⇒  hL = 0.9627 m

7 0
3 years ago
Other questions:
  • a sprue is 12 in long and has a diameter of 5 in at the top. The molten metal level in the pouring basing is taken to be 3 in fr
    13·2 answers
  • I need solution for this question ​
    10·1 answer
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • In a surface grinding operation, the wheel diameter = 8.0 in, wheel width = 1.0 in, wheel speed = 6000 ft/min, work speed = 40 f
    9·1 answer
  • W10L1-Show It: Pythagorean Theorem<br> Calculate the total material in the picture.<br> 4<br> 3
    14·1 answer
  • What did Brother Guy say when he was showing all the pictures of scientists? (the basic point he was making)
    6·2 answers
  • When a circuit has more resistance, what happens to current flow ?
    9·1 answer
  • There are two identical oil tanks. The level of oil in Tank A is 12 ft and is drained at the rate of 0.5 ft/min. Tank B contains
    13·1 answer
  • Silicon chips are used primarily in ?
    9·1 answer
  • The ratio between the modulating signal voltage and the carrier voltage is called?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!