The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>
Answer:
The steady-state temperature difference is 2.42 K
Explanation:
Rate of heat transfer = kA∆T/t
Rate of heat transfer = 6 W
k is the heat transfer coefficient = 152 W/m.K
A is the area of the square silicon = width^2 = (7/1000)^2 = 4.9×10^-5 m^2
t is the thickness of the silicon = 3 mm = 3/1000 = 0.003 m
6 = 152×4.9×10^-5×∆T/0.003
∆T = 6×0.003/152×4.9×10^-5 = 2.42 K
Using the knowledge of computational language in python it is possible to write a code that writes a list and defines the arrange.
<h3>Writing code in python:</h3>
<em>def isSorted(lyst):</em>
<em>if len(lyst) >= 0 and len(lyst) < 2:</em>
<em>return True</em>
<em>else:</em>
<em>for i in range(len(lyst)-1):</em>
<em>if lyst[i] > lyst[i+1]:</em>
<em>return False</em>
<em>return True</em>
<em>def main():</em>
<em>lyst = []</em>
<em>print(isSorted(lyst))</em>
<em>lyst = [1]</em>
<em>print(isSorted(lyst))</em>
<em>lyst = list(range(10))</em>
<em>print(isSorted(lyst))</em>
<em>lyst[9] = 3</em>
<em>print(isSorted(lyst))</em>
<em>main()</em>
See more about python at brainly.com/question/18502436
#SPJ1
Answer:
The answer is "+9.05 kw"
Explanation:
In the given question some information is missing which can be given in the following attachment.
The solution to this question can be defined as follows:
let assume that flow is from 1 to 2 then
Q= 1kw
m=0.1 kg/s
From the steady flow energy equation is:
![m\{n_1+ \frac{v^2_1}{z}+ gz_1 \}+Q= m \{h_2+ \frac{v^2_2}{2}+ gz_2\}+w\\\\\ change \ energy\\\\0.1[1.005 \times 800]-1= 0.01[1.005\times 700]+w\\\\w= +9.05 \ kw\\\\](https://tex.z-dn.net/?f=m%5C%7Bn_1%2B%20%5Cfrac%7Bv%5E2_1%7D%7Bz%7D%2B%20gz_1%20%5C%7D%2BQ%3D%20m%20%5C%7Bh_2%2B%20%5Cfrac%7Bv%5E2_2%7D%7B2%7D%2B%20gz_2%5C%7D%2Bw%5C%5C%5C%5C%5C%20change%20%5C%20energy%5C%5C%5C%5C0.1%5B1.005%20%5Ctimes%20800%5D-1%3D%200.01%5B1.005%5Ctimes%20700%5D%2Bw%5C%5C%5C%5Cw%3D%20%2B9.05%20%5C%20kw%5C%5C%5C%5C)
If the sign of the work performed is positive, it means the work is done on the surrounding so, that the expected direction of the flow is right.
Explanation:
commands to be and function arguments