Then? You didn't type the full question
Answer:
answer for a,b and c are all zero (0).
reasons for all:
zero(0) divided by any number is zero(0).
Answer:
The conclusion "T" logically follows from the premises given and the argument is valid
Step-by-step explanation:
Let us use notations to represent the steps
P: I take a bus
Q: I take the subway
R: I will be late for my appointment
S: I take a taxi
T: I will be broke
The given statement in symbolic form can be written as,
(P V Q) → R
S → (¬R ∧ T)
(¬Q ∧ ¬P) → S
¬R
___________________
∴ T
PROOF:
1. (¬Q ∧ ¬P) → S Premise
2. S → (¬R ∧ T) Premise
3. (¬Q ∧ ¬P) → (¬R ∧ T) (1), (2), Chain Rule
4. ¬(P ∨ Q) → (¬R ∧ T) (3), DeMorgan's law
5. (P ∨ Q) → R Premise
6. ¬R Premise
7. ¬(P ∨ Q) (5), (6), Modus Tollen's rule
8. ¬R ∧ T (4), (7), Modus Ponen's rule
9. T (8), Rule of Conjunction
Therefore the conclusion "T" logically follows from the given premises and the argument is valid.
Answer:

Step-by-step explanation:
Given : 
We have to write which identity we will use to prove the given statement.
Consider 
Take left hand side of given expression 
We know

Comparing , we get, a= 180° and b = q
Substitute , we get,

Also, we know
and 
Substitute, we get,

Simplify , we get,

Hence, use difference identity to prove the given result.