Answer:
The question, 'How much do the dogs in the pound weigh?' is the statistical question.
Hope this helps.
Answer: It is 12/20 and 8/20 so heads has a higher chance
Step-by-step explanation:
Answer:
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet.
This means that 
Find the probability that an individual man’s step length is less than 1.9 feet.
This is the p-value of Z when X = 1.9. So



has a p-value of 0.0668
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
43.0962 is ten thousandths in standard form
Answer:
12/20, or 3/5
Step-by-step explanation:
To find the probability of Raymond not picking red lillies, we first must establish the total amount Raymond can choose from as well as the amount of non-red lillies.
The total amount Raymond can choose from is the amount of bouqets. There are 8 red ones, 5 pink ones, and 7 violet ones. This means that there are 8+5+7=20 total bouquets.
The amount of non-red lillies is determined because we are asked to find the probability of selecting a non-red bouquet. We find the number of non-red bouquets by subtracting the total (20) by the number of red bouquets (8) to get 12.
Therefore, the total amount is 20 and the number of non-red bouquets is 12. Thus, if Raymond picks one bouquet, the probability of him selecting a non-red one is 12/20, or 3/5. The probability of him picking up a red bouquet, similarly, would be 8/20, as there are 8 options of red bouquets out of 20 total