Answer:
The volume of the vessel is 250 L
Partial pressure of hydrogen = 189 torr
Explanation:
Using Boyle's law

Given ,
V₁ = 20.0 L
V₂ = ?
P₁ = 25 atm
P₂ = 2 atm
Using above equation as:




<u>The volume of the vessel is 250 L.</u>
According to Dalton's law of partial pressure:-

So, according to definition of mole fraction:

Also,
Mole fraction of H₂ = 1 - Mole fraction of He = 1 - 0.75 = 0.25
So,
Total pressure = 756 torr
Thus,

<u>Partial pressure of hydrogen = 189 torr.</u>

a)



b)


Using the atomic mass given in the periodic table:




c)


Using the atomic mass given in the periodic table:




This result is an aproximation.
Answer:
Fire is the result of applying enough heat to a fuel source, when you've got a whole lot of oxygen around. As the atoms in the fuel heat up, they begin to vibrate until they break free of the bonds holding them together and are released as volatile gases. These gases react with oxygen in the surrounding atmosphere.
Explanation:
Answer:
Mass of water = 73.08 g
Explanation:
Given data:
Mass of hydrogen = 35 g
Mass of oxygen = 65 g
Mass of water = ?
Solution:
First of all we will write the balanced chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass/ molar mass
Number of moles of hydrogen = 35 g/ 2 g/mol
Number of moles of hydrogen = 17.5 mol
Number of moles of oxygen = 65 g / 32 g/mol
Number of moles of oxygen = 2.03 moles
Now we compare the moles of water with moles hydrogen and oxygen.
H₂ : H₂O
2 : 2
17.5 : 17.5
O₂ : H₂O
1 : 2
2.03 : 2× 2.03 =4.06 mol
Number of moles of water produced by oxygen are less so oxygen is limitting reactant.
Mass of water:
Mass of water = number of moles × molar mass
Mass of water = 4.06 mol × 18 g/mol
Mass of water = 73.08 g