The rate of a chemical reaction can be raised by increasing the surface area of a solid reactant. This is done by cutting the substance into small pieces, or by grinding it into a powder.
Answer:
The correct answer is:
An electron will be emitted in the second experiment, but it cannot be determined whether it will reach the second plate.
Explanation:
In fact, violet has higher frequency than green light. This means that photons on violet carry more energy than photons of green light (remember that the energy of a photon is proportional to it's frequency:

, so when they hit the surface of the metal, more energy is transferred to the electrons. The electron was already emitted with green light, so it must be emitted with also violet light, given the more energy transferred.
Answer:
Well you can not serve it because it is a slow cooker it cooks slow and the refrigerator uses power.Stove tops use power too, I wouldn't feed it to the dog because it whatever you made could possibly make the dog sick and throwing it away is a waste of money. Out of all of those explanations choose the best one. Which ever one you pick whether right or wrong, think about it.
Explanation:
Hello. This question is incomplete. The full question is:
"Consider the following reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
A proposed reaction mechanism is: NO(g) + NO(g) N2O2(g) fast N2O2(g) + H2(g) → N2O(g) + H2O(g) slow N2O(g) + H2(g) → N2(g) + H2O(g) fast
What is the rate expression? A. rate = k[H2] [NO]2 B. rate = k[N2O2] [H2] C. rate = k[NO]2 [H2]2 D. rate = k[NO]2 [N2O2]2 [H2]"
Answer:
A. rate = k[H2] [NO]2
Explanation:
A reaction mechanism is a term used to describe a set of phases that make up a chemical reaction. In these phases a detailed sequence of each step is shown, composed of several complementary reactions, which occur during a chemical reaction.
These mechanisms are directly related to chemical kinetics and allow changes in reaction rates to be observed in advance.
Reaction rate, on the other hand, refers to the speed at which chemical reactions occur.
Based on this, we can observe through the reaction mechanism shown in the question above, that the action "k [H2] [NO] 2" would have no changes in the reaction rate.