Answer:
The average net force on the truck is 375 Newtons.
Explanation:
Using Newton's 3rd equation of motion, we have :
×a×s
where, v = final velocity = 25 m/s
u = initial velocity = 20 m/s
a = acceleration
s = distance traveled = 300 m
Using these values in the above equation, we get acceleration = 0.375 m/
Using Newton's second law, we have:
F=m×a
where m = mass = 1000 kg
a= acceleration = 0.375 m/
Putting values we have F=375 N
The answer is 60 mph.
The speed (v) is distance (d) per time (t): v = d/t
Car A:
v1 = ?
t1 = 2 h
d1 = ?
___
v1 = d1/t1
d1 = v1 * t1
Car B:
v2 = ?
t2 = 1.5 h
d2 = ?
___
v2 = d2/t2
d2 = v2 * t2
<span>Two cars traveled equal distances:
d1 = d2
</span>v1 * t1 = v2 * t2
<span>Car B traveled 15 mph faster than Car A:
v2 = v1 + 15
</span>v1 * t1 = v2 * t2
v2 = v1 + 15
________
v1 * 2 = (v1 + 15) * 1.5
2v1 = 1.5v1 + 22.5
2v1 - 1.5v1 = 22.5
0.5v1 = 22.5
v1 = 22.5/0.5
v1 = 45 mph
v2 = v1 + 15
v2 = 45 + 15
v2 = 60 mph
Answer:
a = 17.68 m/s²
Explanation:
given,
length of the string, L = 0.8 m
angle made with vertical, θ = 61°
time to complete 1 rev, t = 1.25 s
radial acceleration = ?
first we have to calculate the radius of the circle
R = L sin θ
R = 0.8 x sin 61°
R = 0.7 m
now, calculating at the angular velocity


ω = 5.026 rad/s
now, radial acceleration
a = r ω²
a = 0.7 x 5.026²
a = 17.68 m/s²
hence, the radial acceleration of the ball is equal to 17.68 rad/s²
Answer:
Accurate
Explanation:
Accuracy deals with the nearness of the measured values to the true value.
Precision is the ability to reproduce a certain result in a repeated fashion.
- From the given masses of the 5-lb bags, we see that the mean value of the measurement is 5.1-lb
- This value is very close to the original mass of the bag which is 5-lb bags.
- We can say the reading is accurate
The reading is not precise because, the same weight is not reproduced. Different values of weight was reported from each of the measurement process.