Answer:
0.92^n
Explanation:
Given that :
Initial amount of vinegar = 1 Litre
Number of litres removed repeatedly = 0.08 Litre
Since the amount removed each time is constant, then ;
Initial % = 100% = 100/100 = 1
. Using the relation :
Amount of vinegar in mixture :
Initial * (1 - amount removed / initial amount)^n
n = number of times repeated
1 * (1 - 0.08/1)^n
1 * (1 - 0.08)^n
1 * 0.92^n
Hence,
For nth removal,
Concentration will be :
0.92^n ; for n ≥ 1
In order to balance an equation, we apply the principle of conservation of mass, which states that mass can neither be created nor destroyed. Therefore, the mass of an element before and after a reaction remains constant. Here, the balanced equation becomes:
4Al + 3O₂ → 2Al₂O₃
The coefficients are 4, 3 and 2.
<u>Given:</u>
Mass of calcium nitrate (Ca(NO3)2) = 96.1 g
<u>To determine:</u>
Theoretical yield of calcium phosphate, Ca3(PO4)2
<u>Explanation:</u>
Balanced Chemical reaction-
3Ca(NO3)2 + 2Na3PO4 → 6NaNO3 + Ca3(PO4)2
Based on the reaction stoichiometry:
3 moles of Ca(NO3)2 produces 1 mole of Ca3(PO4)2
Now,
Given mass of Ca(NO3)2 = 96.1 g
Molar mass of Ca(NO3)2 = 164 g/mol
# moles of ca(NO3)2 = 96.1/164 = 0.5859 moles
Therefore, # moles of Ca3(PO4)2 produced = 0.0589 * 1/3 = 0.0196 moles
Molar mass of Ca3(PO4)2 = 310 g/mol
Mass of Ca3(PO4)2 produced = 0.0196 * 310 = 6.076 g
Ans: Theoretical yield of Ca3(PO4)2 = 6.08 g
Following are important constant that used in present calculations
Heat of fusion of H2O = 334 J/g
<span>Heat of vaporization of H2O = 2257 J/g </span>
<span>Heat capacity of H2O = 4.18 J/gK
</span>
Now, energy required for melting of ICE = <span> 334 X 5.25 = 1753.5 J .......(1)
Energy required for raising </span><span>the temperature water from 0 oC to 100 oC = 4.18 X 5.25 X 100 = 2195.18 J .............. (2)
</span>Lastly, energy required for boiling water = <span> 2257X 5.25 = 11849.25 J ......(3)
</span><span>
Thus, total heat energy required for entire process = (1) + (2) + (3)
= 1753.5 + 2195.18 + 11849.25
= </span><span>15797.93 J
</span><span> = 15.8 kJ
</span><span>Thus, 15797.93 J of energy is needed to boil 5.25 grams of ice.</span>