Answer:
9.62 μm
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 31.2 THz
Wavelength (λ) =..?
Next, we shall convert 31.2 THz to Hz.
This can be obtained as follow:
Recall:
1 THz = 1×10¹² Hz
Therefore,
31.2 THz = 31.2 THz × 1×10¹² Hz / 1 THz
31.2 THz = 3.12×10¹³ Hz
Therefore, 31.2 THz is equivalent to 3.12×10¹³ Hz.
Finally, we shall determine the wavelength (λ) infrared radiation as follow:
Frequency (f) = 3.12×10¹³ Hz.
Velocity (v) = 3×10⁸ m/s
Wavelength (λ) =..?
V = λf
3×10⁸ = λ × 3.12×10¹³
Divide both side by 3.12×10¹³
λ = 3×10⁸ / 3.12×10¹³
λ = 9.62×10¯⁶ m
Converting 9.62×10¯⁶ m to micro metre (μm) we have:
1 m = 1×10⁶ μm
Therefore,
9.62×10¯⁶ m = 9.62×10¯⁶ m × 1×10⁶ μm / 1 m
9.62×10¯⁶ m = 9.62 μm
Therefore, the wavelength of the infrared radiation is 9.62 μm
Answer:
400 meters every 20 seconds
Explanation:
Answer:
Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues.
Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications.
The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymers—plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatings—and how their composition and specific methods of processing result in unparalleled usefulness.
Answer:
We will not know immediately
Explanation:
The distance of star Betelgeuse = 325 light years
Therefore, if it where to explode, at the location, we would have a supernovae such that the luminosity of the star multiplies several multiple times
However, due to the distance of Betelgeuse from the Earth, it will take the light of the explosion, 325 years to reach Earth and the explosion as it happens will not be noticed here on Earth immediately
Answer:
hello, what exactly is your question? I looked at the document attached too