Answer:
Option A
Explanation:
A) Yes. The reaction reaches equilibrium when the rate of reaction of the reverse reaction is equal to the rate of the forward reaction , then the only cause for the reverse reaction to be favoured is that the initial rate of the reverse was greater than the forward one.
B) No. The rate constant of the reverse reaction can be greater than the forward one but the rate also depends on concentrations, thus a reverse reaction with greater rate constant can result in the net reaction proceeding in the forward reaction, the reverse reaction or be at equilibrium depending on the concentrations or reactants and products
C) No. A lower activation energy means a higher rate constant , but a higher rate constant does not mean that the net reaction will proceed to the reactants ( see point B)
D) No. The energy changes determine conditions under thermodynamic equilibrium and therefore the net direction of the reaction will depend on the temperature and concentrations of reactants and products with respect to the equilibrium conditions.
Answer:
D. exosphere is the outer layer of the thermosphere
Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles =
= 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺
Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of
is 
The total mass is
The uncertainty of the total mass is 
Generally the molar weight of calcium is 
The percentage of calcium in calcite is mathematically represented as


Generally the mass of each sample is mathematically represented as



Generally mass of calcium present in a single sample is mathematically represented as


The uncertainty of mass of a single sample is mathematically represented as



The uncertainty of mass of calcium in a single sample is mathematically represent

Generally the average mass of calcium in each sample is
