Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
Current is created when charges are quickened by an electric field to move where the position of lower temperature. An electric current is a stream of electric charge. In electric circuits, this charge is regularly conveyed by moving electrons in a wire.
m = mass of the car moving in horizontal circle = 1750 kg
v = Constant speed of the car moving in the horizontal circle = 15 m/s
r = radius of the horizontal circular track traced by the car = 45.0 m
F = magnitude of the centripetal force acting on the car
To move in a circle . centripetal force is required which is given as
F = m v²/r
inserting the above values in the formula
F = (1750) (15)²/(45)
F = (1750) (225)/(45)
F = 1750 x 5
F = 8750 N
Answer:
, level is rising.
Explanation:
Since liquid water is a incompresible fluid, density can be eliminated of the equation of Mass Conservation, which is simplified as follows:


By replacing all known variables:

The positive sign of the rate of change of the tank level indicates a rising behaviour.