In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
1. The hypothesis for this is experiment is that the 50:50 of methanol-water mixture will not turn to solid when the temperature reaches to -40°C.
2. The procedure for this is measuring equal volumes of water and methanol using the graduated cylinder. You can measure 100 mL of water and 100 mL of methanol using the graduated cylinder. Then, mix them in the beaker. Next, measure 200 mL of water, and another 200 mL of methanol. Don't mix them. Also, make a 60:40 mixture by measuring 120 mL of water and 80 mL of methanol, then mix them together. Place them all in the refrigerator at the same time. Record the time when they would freeze to solid.
3. The controls for this experiment are the 200 mL water alone, and the 200 mL methanol alone.
4. The independent variable in here is the time, while the dependent variable is the temperature of the mixtures.
5. If the hypothesis turns out to be true, then all the mixtures prepared should freeze and become solid after a certain period of time, with the exception of the 50:50 mixture. The 50:50 mixture should still remain as a liquid even when left overnight.
Organic molecules typically do not contain the noble gases, so they would contain all but Ne
Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
Molar mass NaCl = 58.44 g/mol
number of moles:
mass NaCl / molar mass
145 / 58.44 => 2.4811 moles of NaCl
Volume = 3.45 L
Therefore :
M = moles / volume in liters:
M = 2.4811 / 3.45
M = 0.719 mol/L⁻¹
hope this helps!