Answer:
1.) 440 Hz
2.) 659.3 Hz
Explanation:
1.) Given parameters are:
wavelength = 0.77955 m.
speed of sound = 343.00 m/s
Frequency = speed/ wavelength
Substitute speed and wavelength into the formula
Frequency = 343/ 0.77955
Frequency = 439.99
Frequency = 440 Hz approximately
2.) The parameters given are:
wavelength = 0.52028 m.
speed of sound = 343.00 m/s
Using the same formula
Frequency = speed/wavelength
Substitute all the parameters into the formula
Frequency = 343 / 0.52028
Frequency = 659.3 Hz approximately
The pitch of a note depends on the frequency of the sound waves.
The pitch of a sound increases as the frequency of the sound waves increases.
Answer:
shift the wavelength of spectral lines
Explanation:
The Doppler effect is commonly used in the field of astronomy to study the motion of astronomical objects such as a star, planets, and distant galaxies. This results in the changing of wavelength and shifting of the spectral lines, due to the relative and continuous motion of the receiver and the source. This is known as the red-shifting, where the lights in the spectrum move towards the highest wavelength, i.e towards the red light. This Doppler effect signifies that the distance between the distant galaxies and earth increases with the increasing recessional velocity.
Answer:
160m/s
Explanation:
The speed of a wave is related to its frequency and wavelength, according to this equation:
v=f ×λ