Answer:
B. 14.4 N
Rotational speed (Angular Velocity) = 2
The Radius of the circle = 1.2 m
Velocity = Angular velocity × radius = 2×1.2 = 2.4 m/s
Centripetal force= mv²/r = 3 × 2.4×2.4/1.2 = 3 × 2.4 × 2
= 14.4 N
Answer:
8.874
Explanation:
You need to times 5.22 kg and 1.7 m/s to get 8.874.
We don't know Carter, and we don't know where he is or what
he's doing, so I'm taking a big chance speculating on an answer.
I'm going to say that if Carter is pretty much just standing there,
or, let's say, lying on the ground taking a nap, then the force of
the ground acting on him is precisely exactly equal to his weight.
<span>We can answer this using
the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²
-----> 1</span></span>
ω² = ω₀² + 2αθ
-----> 2
Where:
θ = final angular
displacement = 70.4 rad
θ₀ = initial
angular displacement = 0
ω₀ = initial angular
speed
ω = final angular speed
t = time = 3.80 s
α = angular acceleration
= -5.20 rad/s^2
Substituting the values
into equation 1:<span>
70.4 = 0 + ω₀(3.80)
+ ½(-5.20)(3.80)² </span><span>
ω₀ = (70.4
+ 37.544) / 3.80 </span><span>
ω₀ = 28.406
rad/s </span><span>
Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4
ω = 8.65 rad/s
</span>