Answer:
Force required to accelerate = 794.44 N
Explanation:
Force required = Mass of horse x Acceleration of horse
Mass of horse and rider, m= 572 kg
Acceleration of horse and rider, a = 5 kph per second

Force required = ma
= 572 x 1.39 = 794.44 N
Force required to accelerate = 794.44 N
Answer:
Velocity of the ping pong ball must be = V2= 6,035.34m/s
Explanation:
M1= momentum of the bowling ball
m1 = mass of the bowling ball= 5.8kg
v1= velocity of the bowling ball= 1.59m/s
M2= momentum of the ping pong ball
m2= mass of the ping pong ball= 1.528 g/1000= 0.001528kg
v2= velocity of the ping pong ball
Momentum of the bowling ball= M1= m1v1= 5.8* 1.59= 9.222 kg-m/s
Momentum of the ping pong ball = M2= M1= m2v2
= 0.001528 *v2= 9.222
v2= 9.222/0.001528= 6,035.34 m/s
It's 3.6 meters per second less than my speed was
at 4:19 PM last Tuesday.
Does that tell you anything ?
Why not ?
Answer:
the magnitude of the work done by the two blocks is the same.
Explanation:
The work done by block a on block b is given by:

where Fa is the force exerted by block a on block b, and d is the distance they cover.
The work done by block b on block a is given by:

where Fb is the force exerted by block b on block a, and d is still the distance they cover.
For Newton's third law, the force exerted by block a on block b is equal to the force exerted by block b on block a, therefore

and so

Answer:
Push and pull both are forces , but the difference is in their direction at which it is applied . If the force applied in the direction of motion of the particle then we call it as push . If that force applied in the direction OPPOSITE to the motion of particle then it is termed as pull