If you’re talking about noble gases, the answer would be A. Since noble gases already have 8 electrons, they don’t tend to form chemical bonds. And elements need just 8 electrons on there shells to be stable.
Answer:
15.70mg would remain
Explanation:
Partition coefficient is used to extract or purify a solute from a solvent selectively to avoid interference from other substances. For the problem, formula is:
Kp = Concentration 9-fluorenone in ether / Concentration of solute in H₂O
After the solute, 9-fluorenone, is extracted with water, the mass that remains in ether is:
(19mg - X)
<em>Where X is the mass that now is in the aqueous phase</em>
Replacing in Kp formula:
9.5 = (19mg - X) / 5mL / (X /10mL)
0.95X = 19mg - X / 5mL
4.75X = 19 - X
5.75X = 19
X = 19 / 5.75
X = 3.30mg
That means 9-fluorenone that remain in the ether layer is:
19mg - 3.30mg =
<h3>15.70mg would remain</h3>
C6H14+9.5O2=6CO2 +7H20
Number of moles of C6H14=15.6/86=0.1814 moles
so moles of CO2 = 6(0.1814)=1.088
As the c6h14 has 1 is to 6 ratio with co2
so
0.1814=mass/44
mass of co2 produced = 47.9 g