Special Structures in Plant Cells. Most organelles are common to both animal and plant cells. However, plant cells also have features that animal cells do not have: a cell wall, a large central vacuole, and plastids such as chloroplasts.
Answer:
1) 2.054 x 10⁻⁴ mol/L.
2) Decreasing the temperature will increase the solubilty of O₂ gas in water.
Explanation:
1) The solubility of O₂ gas in water:
- We cam calculate the solubility of O₂ in water using Henry's law: <em>Cgas = K P</em>,
- where, Cgas is the solubility if gas,
- K is henry's law constant (K for O₂ at 25 ̊C is 1.3 x 10⁻³ mol/l atm),
- P is the partial pressure of O₂ (P = 120 torr / 760 = 0.158 atm).
- Cgas = K P = (1.3 x 10⁻³ mol/l atm) (0.158 atm) = 2.054 x 10⁻⁴ mol/L.
2) The effect of decreasing temperature on the solubility O₂ gas in water:
- Decreasing the temperature will increase the solubilty of O₂ gas in water.
- When the temperature increases, the solubility of O₂ gas in water will decrease because the increase in T will increase the kinetic energy of gas particles and increase its motion that will break intermolecular bonds and escape from solution.
- Decreasing the temperature will increase the solubility of O₂ gas in water will because the kinetic energy of gas particles will decrease and limit its motion that can not break the intermolecular bonds and increase the solubility of O₂ gas.
There can be a lot of meanings for isomers. In this case, we are showing the structural isomers of C₇H₁₆. Based on the chemical formula, CₓH₂ₓ₊₂ it is an alkane. They only differ in the positions of methane branches in the parent carbon chain. Basing on the attached picture, the parent carbon chain is pentane for both isomers. But the methyl branches are on the 2nd & 4th, and 2nd & 3rd carbon for 2,4 - dimethylpentane and 2,3 - dimethylpentane, respectively.
Answer is: <span>an atomic radius.
</span>The atomic radius<span> of a </span>chemical element<span> is a measure of the size of its atom.
</span>The atomic radius varies with increasing atomic number, but usually increases because of increasing of number of electrons.
The atomic radius decreases across the periods because an increasing number of protons, because <span>greater attraction between the protons and electrons.</span>
Explanation:
The molarity of a solution is defined like the number of moles of solute per liters of solution.
molarity = moles of solute/(volume of solution in L)
We know the volume of solution in L.
volume of solution = 0.65 L
To go from the mass of our solute in grams to moles we have to use its molar mass.
mass of NaCl = 63 g
molar mass of NaCl = 58.44 g/mol
moles of NaCl = 63 g * 1 mol/(58.44 g)
moles of NaCl = 1.078 moles
Finally we can find the molarity of the solution
molarity = moles of NaCl/(volume of solution)
molarity = 1.078 moles/(0.65 L)
molarity = 1.66 M
Answer: the molarity of the solution is 1.66 M.