Answer:
10cos(5x)sin(10x) = 5[sin (15x) + sin (5x)]
Step-by-step explanation:
In this question, we are tasked with writing the product as a sum.
To do this, we shall be using the sum to product formula below;
cosαsinβ = 1/2[ sin(α + β) - sin(α - β)]
From the question, we can say α= 5x and β= 10x
Plugging these values into the equation, we have
10cos(5x)sin(10x) = (10) × 1/2[sin (5x + 10x) - sin(5x - 10x)]
= 5[sin (15x) - sin (-5x)]
We apply odd identity i.e sin(-x) = -sinx
Thus applying same to sin(-5x)
sin(-5x) = -sin(5x)
Thus;
5[sin (15x) - sin (-5x)] = 5[sin (15x) -(-sin(5x))]
= 5[sin (15x) + sin (5x)]
Hence, 10cos(5x)sin(10x) = 5[sin (15x) + sin (5x)]
Answer:
(a)Revenue function,
Marginal Revenue function, R'(x)=580-2x
(b)Fixed cost =900
.
Marginal Cost Function=300+50x
(c)Profit,
(d)x=4
Step-by-step explanation:
<u>Part A
</u>
Price Function
The revenue function

The marginal revenue function

<u>Part B
</u>
<u>(Fixed Cost)</u>
The total cost function of the company is given by 
We expand the expression

Therefore, the fixed cost is 900
.
<u>
Marginal Cost Function</u>
If 
Marginal Cost Function, 
<u>Part C
</u>
<u>Profit Function
</u>
Profit=Revenue -Total cost

<u>
Part D
</u>
To maximize profit, we find the derivative of the profit function, equate it to zero and solve for x.

The number of cakes that maximizes profit is 4.
Using law of cosines:
Cos(angle) = adjacent/ hypotenuse
Cos(22) = 12/x
Rewrite to get:
X = 12/cos(22)
Simplify:
X = 12.9424
Round the answer as needed.
Answer:
$10.71
Step-by-step explanation:

y × 35 = 3.75 × 100
35y = 375
35y ÷ 35 = 375 ÷ 35

y = 10.7142857143
10.7142857143 round to 10.71